%I #4 Sep 28 2020 21:42:10
%S 1,2,1,3,22,1,4,267,11251322,1,5,1996,4825746875682,
%T 314824532572147370464,1,6,10375,48038446526132256,
%U 38491882660671134164965704408524083,31716615393638864931753532641338560302264320,1
%N Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the faces of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.
%C Each chiral pair is counted as one when enumerating unoriented arrangements. For n=2, the figure is a square with one square face. For n=3, the figure is an octahedron with 8 triangular faces. For higher n, the number of triangular faces is 8*C(n,3).
%C Also the number of unoriented colorings of the peaks of an n-dimensional orthotope (hypercube). A peak is an (n-3)-dimensional orthotope.
%H K. Balasubramanian, <a href="https://doi.org/10.33187/jmsm.471940">Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications</a>, J. Math. Sci. & Mod. 1 (2018), 158-180.
%F The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
%F T(n,k) = A337891(n,k) - A337893(n,k) = (A337891(n,k) + A337894(n,k)) / 2 = A337893(n,k) + A337894(n,k).
%e Array begins with T(2,1):
%e 1 2 3 4 5 ...
%e 1 22 267 1996 10375 ...
%e 1 11251322 4825746875682 48038446526132256 60632984344185045000 ...
%t m=2; (* dimension of color element, here a face *)
%t Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
%t FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
%t CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
%t PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
%t pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
%t row[m]=b;
%t row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
%t array[n_, k_] := row[n] /. b -> k
%t Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten
%Y Cf. A337891 (oriented), A337893 (chiral), A337894 (achiral).
%Y Other elements: A325005 (vertices), A337412 (edges).
%Y Other polytopes: A337884 (simplex), A337888 (orthotope).
%Y Rows 2-4 are A000027, A128766, A331359
%K nonn,tabl
%O 2,2
%A _Robert A. Russell_, Sep 28 2020