OFFSET
1,4
COMMENTS
Short definition of the Multiset Transformation: supposed we have F(w) distinct objects of weight w. Then T(n,k) is the number of bags of objects with total weight n containing k objects. Multisets means that objects may appear more than once in the bag, but the order of the objects in the bag does not matter.
Apparently A200544 is the limit of the reversed rows as n approaches infinity.
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-y*x^j)^Fibonacci(j). - Jean-François Alcover, Oct 29 2021
Sum_{k=0..n} (-1)^k * T(n,k) = A357475(n). - Alois P. Heinz, Apr 30 2023
EXAMPLE
The triangle starts with rows n>=1 and columns k>=1:
1
1 1
2 1 1
3 3 1 1
5 5 3 1 1
8 11 6 3 1 1
13 19 13 6 3 1 1
21 37 25 14 6 3 1 1
34 65 52 27 14 6 3 1 1
55 120 98 58 28 14 6 3 1 1
89 210 191 113 60 28 14 6 3 1 1
144 376 360 229 119 61 28 14 6 3 1 1
233 654 678 443 244 121 61 28 14 6 3 1 1
377 1149 1255 866 481 250 122 61 28 14 6 3 1 1
...
MAPLE
F:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n,
add(binomial(F(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, Oct 29 2021
MATHEMATICA
nn = 13;
Rest@CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^Fibonacci[i], {i, 1, nn}], {x, 0, nn}] // Rest@CoefficientList[#, x]&) // Flatten (* Jean-François Alcover, Oct 29 2021 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Aug 11 2020
STATUS
approved