login
A335929
Decimal expansion of the area of the region bounded by y = 1 and y = Gamma(x).
8
0, 7, 7, 2, 5, 4, 0, 4, 9, 3, 1, 9, 3, 6, 9, 3, 9, 4, 8, 5, 6, 1, 1, 9, 5, 1, 7, 6, 5, 4, 2, 4, 4, 4, 2, 2, 5, 6, 2, 7, 6, 5, 6, 0, 8, 2, 8, 9, 3, 1, 4, 0, 8, 4, 7, 9, 7, 9, 1, 9, 5, 9, 1, 6, 4, 6, 1, 5, 0, 9, 4, 1, 3, 4, 8, 0, 2, 4, 2, 1, 7, 2, 4, 1, 1, 6, 2
OFFSET
0,2
COMMENTS
Gamma(1) = Gamma(2) = 1, and the interval (1,2) gives the portion of the graph of y = Gamma x that lies under the line y = 1, as shown by the Mathematica program.
EXAMPLE
area = 0.07725404931936939485611951765424442256276560828931408...
MATHEMATICA
r = NIntegrate[1 - Gamma[x], {x, 1, 2}, WorkingPrecision -> 200]
RealDigits[r][[1]]
Plot[Gamma[x] - 1, {x, .5, 2.5}]
CROSSREFS
Cf. A335960.
Sequence in context: A083871 A372774 A255272 * A303658 A169812 A195907
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jul 03 2020
STATUS
approved