|
|
A334629
|
|
Smallest number that can be obtained by starting with 1 and applying "Choix de Bruxelles (version 2)" (see A323460) n times without backtracking or repeating.
|
|
0
|
|
|
1, 2, 4, 8, 16, 13, 23, 17, 14, 7, 6, 3, 99, 369, 999, 1999, 9879
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..16.
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444, Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
|
|
FORMULA
|
A323454(a(n)) = n by definition.
|
|
EXAMPLE
|
a(0)-a(4) = 1,2,4,8,16 by applying 0,1,2,3,4 steps: 1->2->4->8->16.
a(5) = 13 by applying 5 steps: 1->2->4->8->16->13 (halve the 6 in 16).
a(11) = 3 by applying 11 steps to reach 3 from 1.
|
|
CROSSREFS
|
Cf. A323454, A323460.
Sequence in context: A095915 A208278 A036120 * A358708 A108565 A066005
Adjacent sequences: A334626 A334627 A334628 * A334630 A334631 A334632
|
|
KEYWORD
|
nonn,base,more
|
|
AUTHOR
|
Philip C. Ritchey, Sep 09 2020
|
|
STATUS
|
approved
|
|
|
|