The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334357 Number of nonequivalent proper colorings of the vertices of a 4D hypercube using at most n colors up to rotations and reflections of the cube. 2
 0, 1, 72, 7173, 610160, 28654530, 723903411, 11151501102, 117740542158, 928786063095, 5822688352360, 30338870238171, 135818642249082, 535712216425568, 1898338161488055, 6136965479845740, 18323823959847156, 51039512178104637, 133722394132080528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Adjacent vertices may not have the same color. a(n) is the number of nonequivalent n-colorings of the tesseract graph up to graph isomorphism. LINKS Eric Weisstein's World of Mathematics, Hypercube Graph Eric Weisstein's World of Mathematics, Tesseract Graph Eric Weisstein's World of Mathematics, Vertex Coloring FORMULA a(n) = n*(n - 1)*(n^14 - 31*n^13 + 465*n^12 - 4471*n^11 + 30805*n^10 - 161035*n^9 + 659293*n^8 - 2149343*n^7 + 5610000*n^6 - 11666144*n^5 + 19009100*n^4 - 23485632*n^3 + 20729104*n^2 - 11646800*n + 3125472)/384. a(n) = Sum_{k=1..16} n^k * A334358(4,16-k) / 384. CROSSREFS Cf. A128767, A158348, A334356, A334358. Sequence in context: A216705 A223148 A289368 * A119750 A283093 A178635 Adjacent sequences:  A334354 A334355 A334356 * A334358 A334359 A334360 KEYWORD nonn AUTHOR Andrew Howroyd, Apr 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 08:53 EDT 2021. Contains 343204 sequences. (Running on oeis4.)