The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333715 a(n) = [x^(3*n)] ( (1 + x)/(1 - x) )^n. 8

%I #29 Jun 03 2023 10:25:05

%S 1,2,24,326,4672,69002,1038984,15856206,244396544,3795731282,

%T 59307908024,931222155030,14680871849152,232236016459098,

%U 3684420837693480,58600075142247326,934064636705476608,14917333936933664674,238641621366613695576,3823510794994321546214,61344017874989324388672

%N a(n) = [x^(3*n)] ( (1 + x)/(1 - x) )^n.

%C a(n) is also equal to [x^n] G(x)^n, where G(x) is the o.g.f. of A027307.

%C Compare with A002003(n) = [x^n] ( (1 + x)/(1 - x) )^n and A103885(n) = [x^(2*n)] ( (1 + x)/(1 - x) )^n = [x^n] S(x)^n, where S(x) is the o.g.f. of the large Schröder numbers A006318.

%C If we define an operator I acting on power series f(x) = 1 + f_1*x + f_2*x^2 + ... by I(f(x)) = 1/x * Revert( x/f(x) ) then S(x) = I( (1 + x)/(1 - x) ) and G(x) = (I o I)( (1 + x)/(1 - x )).

%C It can be shown that a(n) satisfies the Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.

%C We conjecture that a(n) satisfies the stronger congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Some examples of these congruences are given below.

%C The same congruences may hold more generally for the sequences a(r,s,n) := [x^(r*n)]( (1 + x)/(1 - x) )^(s*n), r a positive integer and s an integer. This is the case a(3,1,n).

%C For fixed m = 1,2,3,..., we conjecture that the sequence b(n) := a(m*n) satisfies a recurrence of the form P(6*m,n)*b(n+1) + P(6*m,-n)*b(n-1) = Q(3*m,n^2)*b(n), where the polynomials P(6*m,n) and Q(3*m,n^2) have degree 6*m. Conjecturally, the 6*m zeros of the polynomial Q(3*m,n^2) belong to the interval [-1, 1] and 6*m - 4 of these zeros appear to be approximated by the rational numbers +- k/(4*m), where 1 <= k <= 4*m - 3, k not a multiple of 4.

%H Seiichi Manyama, <a href="/A333715/b333715.txt">Table of n, a(n) for n = 0..824</a>

%F a(n) = Sum_{k = 0..n} C(n,k)*C(3*n+k-1,n-1).

%F a(n) = (1/3) * Sum_{k = 0..n} C(3*n,n-k)*C(3*n+k-1,k) for n >= 1.

%F a(n) = (1/3) * [x^n] ( (1 + x)/(1 - x) )^(3*n).

%F a(n) = Sum_{k = 1..n} (2^k)*C(n,k)*C(3*n-1,k-1) for n >= 1.

%F P-recursive:

%F P(6,n)*a(n+1) + P(6,-n)*a(n-1) = Q(3,n^2)*a(n), where P(6,n) = (2*n-1)*(3*n+1)*(3*n+2)*(3*n+3)*(35*n^2 - 35*n + 6) and the polynomial Q(3,n) = 4*(7805*n^3 - 7132*n^2 + 1559*n - 72).

%F Congruences: a(p) == 2 ( mod p^3 ) for prime p >= 3.

%F a(n) ~ (223 + 70*sqrt(10))^n / (2^(3/4) * 5^(1/4) * sqrt(Pi*n) * 3^(3*n + 1/2)). - _Vaclav Kotesovec_, Apr 04 2020

%F exp( Sum_{n>=1} a(n)*x^n/n ) = B(x) where B(x) = 1 + x*(B(x)^3 + B(x)^4) is the g.f. of A144097. - _Paul D. Hanna_, May 31 2023

%e Examples of congruences:

%e a(11) - a(1) = 931222155030 - 2 = (2^2)*(11^3)*163*1073069 == ( mod 11^3 )

%e a(3*7) - a(3) = 985413034951400888962602 - 326 = (2^2)*(7^4)*263* 390130947874776863 == 0 ( mod 7^3 )

%e a(5^2) - a(5) = 66292579025690123511768694002 - 69002 = (2^3)*(5^6)*39461* 13439614612035199009 == 0 ( mod 5^6 )

%p seq(add(binomial(n,k)*binomial(3*n+k-1,n-1), k = 0..n), n = 0..20);

%t Table[Binomial[3*n-1, n-1] * Hypergeometric2F1[-n, 3*n, 2*n+1, -1], {n, 0, 20}] (* _Vaclav Kotesovec_, Apr 04 2020 *)

%Y Cf. A002003, A027307, A103885, A144097.

%K nonn,easy

%O 0,2

%A _Peter Bala_, Apr 03 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 12:26 EDT 2024. Contains 372600 sequences. (Running on oeis4.)