login
A333025
Irregular table read by rows: Take an isosceles triangle with its equal length sides divided into n equal parts with all diagonals drawn, as in A332953. Then T(n,k) = number of k-sided polygons in that figure for k>=3.
7
1, 5, 14, 3, 1, 29, 19, 4, 50, 66, 9, 81, 164, 12, 134, 313, 37, 2, 219, 546, 60, 7, 359, 853, 112, 9, 556, 1294, 160, 16, 1, 779, 1940, 283, 43, 3, 1105, 2780, 360, 53, 6, 1540, 3750, 670, 91, 5, 1, 2087, 5064, 873, 132, 11, 2806, 6625, 1144, 164, 7, 3
OFFSET
1,2
COMMENTS
See the links in A332953 for images of the triangles.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..613 (the first 70 rows)
EXAMPLE
Table begins:
1;
5;
14, 3, 1;
29, 19, 4;
50, 66, 9;
81, 164, 12;
134, 313, 37, 2;
219, 546, 60, 7;
359, 853, 112, 9;
556, 1294, 160, 16, 1;
779, 1940, 283, 43, 3;
1105, 2780, 360, 53, 6;
1540, 3750, 670, 91, 5, 1;
2087, 5064, 873, 132, 11;
2806, 6625, 1144, 164, 7, 3;
The row sums are A332953.
CROSSREFS
Cf. A332953 (regions), A333026 (vertices), A333027 (edges), A007678, A092867, A331452, A331911, A332357, A332358.
Sequence in context: A049506 A069524 A262612 * A144518 A051542 A083660
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved