OFFSET
1,3
FORMULA
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 - x)) * (A(x) + x * Sum_{k>=1} A(x^k))).
a(1) = 1; a(n) = a(n-1) + Sum_{k=1..n-2} (a(k) + Sum_{d|k} a(d)).
a(n) ~ c * (1 + sqrt(2))^n, where c = 0.2594006517235012546870541901936538347053403598092060748627156661727... - Vaclav Kotesovec, Mar 10 2020
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[a[k] Ceiling[(n - 1)/k], {k, 1, n - 1}]; Table[a[n], {n, 1, 33}]
a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[a[k] + Sum[a[d], {d, Divisors[k]}], {k, 1, n - 2}]; Table[a[n], {n, 1, 33}]
terms = 33; A[_] = 0; Do[A[x_] = x (1 + (1/(1 - x)) (A[x] + x Sum[A[x^k], {k, 1, terms}])) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 26 2020
STATUS
approved