login
A332314
Numbers k such that k, k + 1, k + 2 and k + 3 have the same number of divisors in Gaussian integers.
4
263449773, 334047725, 760228973, 862305773, 1965540624, 2136055725, 2362380525, 2477365422, 2515570575, 2613782223, 2939626925, 3181603023, 3814526223, 3987335022, 4610697039, 4771214574, 4981539822, 5018728272, 5035157775, 5186567824, 6189727725, 6329159823, 6569396973
OFFSET
1,1
EXAMPLE
263449773 is a term since 263449773, 263449774, 263449775 and 263449776 each have 72 divisors in Gaussian integers.
MATHEMATICA
gaussNumDiv[n_] := DivisorSigma[0, n, GaussianIntegers -> True]; m = 4; s = gaussNumDiv /@ Range[m]; seq = {}; n = m + 1; While[Length[seq] < 10, If[Length @ Union[s] == 1, AppendTo[seq, n - m + 1]]; n++; s = Join[Rest[s], {gaussNumDiv[n]}]]; seq
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 09 2020
STATUS
approved