OFFSET
0,3
COMMENTS
Let b(n,k) = Sum_{j=0..n} (-1)^(n-j)* j^k * binomial(n,j) * binomial(n+j,j).
b(n,0) = 1.
b(n,1) = 1/1! * n * (n+1).
b(n,2) = 1/2! * n^2 * (n+1)^2.
b(n,3) = 1/3! * n^2 * (n+1)^2 * (n^2+n+1) (= 2*a(n)).
b(n,4) = 1/4! * n^3 * (n+1)^3 * (n^2+n+4).
b(n,5) = 1/5! * n^2 * (n+1)^2 * (n^6+3*n^5+13*n^4+21*n^3+18*n^2+8*n-4).
b(n,6) = 1/6! * n^3 * (n+1)^3 * (n^2+n+4) * (n^4+2*n^3+17*n^2+16*n-6).
LINKS
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: x * (x^4+14*x^3+30*x^2+14*x+1)/(1-x)^7.
MATHEMATICA
a[n_] := (n*(n+1))^2 * (n^2+n+1) / 12; Array[a, 33, 0] (* Amiram Eldar, May 05 2021 *)
PROG
(PARI) {a(n) = n^2*(n+1)^2*(n^2+n+1)/12}
(Magma) [n^2*(n+1)^2*(n^2+n+1)/12:n in [0..32]]; // Marius A. Burtea, Jan 19 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 33); [0] cat (Coefficients(R!( x*(x^4+14*x^3+30*x^2+14*x+1)/(1-x)^7))); // Marius A. Burtea, Jan 19 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 19 2020
STATUS
approved