login
A331273
Sum of the iterated exponential totient function (A072911).
5
0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
Analogous to A092693 with the exponential totient function ephi instead of the Euler totient function phi (A000010).
a(n) = 1 for n > 1 which is cubefree (A004709) and a(n) > 1 for n in A046099.
LINKS
EXAMPLE
a(8) = ephi(8) + ephi(ephi(8)) = 2 + 1 = 3 (where ephi is A072911).
MATHEMATICA
ephi[n_] := Times @@ EulerPhi[FactorInteger[n][[;; , 2]]]; s[n_] := Plus @@ FixedPointList[ephi, n] - n - 1; Array[s, 100]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 25 2020
STATUS
approved