%I #4 Jan 04 2020 12:56:15
%S 4,1,8,1,1,2,5,4,4,5,2,9,2,6,7,4,3,0,0,5,4,4,5,8,2,5,6,0,2,1,1,8,9,8,
%T 0,8,0,6,0,8,5,6,6,3,6,3,0,8,9,7,2,1,1,5,2,5,6,7,8,2,0,7,6,9,6,6,9,9,
%U 7,5,2,6,2,4,4,2,6,9,6,2,6,1,3,8,4,9
%N Decimal expansion of the solution of 1/sqrt(x-1) + 1/sqrt(x+1) = 1.
%F x^4 - 4 x^3 - 2 x^2 + 4 x + 5 = 0.
%e x = 4.1811254452926743005445825602118...
%t r = x /. FindRoot[1/Sqrt[x - 1] + 1/Sqrt[x + 1] == 1, {x, 2, 10}, WorkingPrecision -> 210]
%t RealDigits[r][[1]] (* A329998 *)
%t Plot[1/Sqrt[x - 1] + 1/Sqrt[x + 1] - 1, {x, 1, 6}]
%Y Cf. A329999, A330000.
%K nonn,cons,easy
%O 1,1
%A _Clark Kimberling_, Jan 03 2020