login
A329335
Continued fraction of A328905 = 0.5638955242599..., solution to 1 + 2^x = 5^x.
1
0, 1, 1, 3, 2, 2, 2, 1, 3, 3, 1, 5, 3, 1, 1, 3, 1, 1, 6, 1, 36, 20, 18, 3, 1, 3, 2, 1, 2, 9, 3, 2, 1, 1, 1, 2, 7, 1, 1, 5, 1, 112, 2, 1, 6, 2, 1, 1, 1, 1, 2, 44, 1, 2, 3, 70, 1, 1, 1, 12, 3, 1, 5, 6, 1, 1, 10, 4, 4, 2, 3, 1, 7, 1, 4, 1, 1, 1, 5, 2, 1, 5, 1, 4, 3, 1, 1, 1, 1, 2, 1, 1, 4, 6, 7, 2
OFFSET
0,4
EXAMPLE
0.5638955242599... = 0 + 1/(1 + 1/(1 + 1/(3 + 1/(2 + 1/(2 + 1/(2 + 1/...))))))
PROG
(PARI) contfrac(c=solve(x=0, 1, 1+2^x-5^x))[^-1] \\ discarding possibly incorrect last term. Use e.g. \p999 to get more terms. - M. F. Hasler, Oct 31 2019
CROSSREFS
Cf. A328912 (cont. frac. of A242208: 1 + 2^x = 4^x), A328913 (cont. frac. of A328900: 2^x + 3^x = 4^x), A329337 (cont. frac. of A328907: 1 + 3^x = 6^x).
Sequence in context: A116943 A328389 A332789 * A144476 A155677 A075791
KEYWORD
nonn,cofr
AUTHOR
M. F. Hasler, Nov 11 2019
STATUS
approved