login
A329203
Numbers k such that A329308(k) = 0.
1
1, 2, 3, 4, 5, 8, 9, 13, 17, 24, 33, 40, 64, 76, 108, 116, 208, 220, 324, 496, 504, 564, 1176
OFFSET
1,2
COMMENTS
Numbers k such that there is no m < sqrt(k) for which k mod (m^2) is prime.
No more terms up to 2*10^7. I conjecture that these are all the terms.
EXAMPLE
a(7) = 17 is in the sequence because 17 mod (2^2) = 1, 17 mod (3^2) = 8 and 17 mod (4^2) = 1 are all nonprime while 5^2 > 17.
20 is not in the sequence because 20 mod (3^2) = 2 is prime and 3^2 < 20.
MAPLE
filter:= proc(n) local k;
for k from 2 to floor(sqrt(n)) do if isprime(n mod k^2) then return false fi od:
true
end proc:
select(filter, [$1..10^6]);
PROG
(Magma) [m:m in [1..2000]| #[k:k in [2..Floor(Sqrt(m))]| IsPrime(m mod k^2) ] eq 0]; // Marius A. Burtea, Nov 11 2019
CROSSREFS
Cf. A329308.
Sequence in context: A349412 A317082 A268359 * A054181 A329563 A163077
KEYWORD
nonn,more
AUTHOR
Robert Israel, Nov 10 2019
STATUS
approved