login
Least imprimitive Carmichael number (A328935) with n prime factors, or -1 if no such number exists.
0

%I #18 Apr 22 2024 08:12:06

%S 294409,167979421,1152091655881,62411762908817281,1516087654274358001

%N Least imprimitive Carmichael number (A328935) with n prime factors, or -1 if no such number exists.

%C From _Daniel Suteu_, Feb 17 2020: (Start)

%C a(8) <= 42310088783100741554666880481,

%C a(9) <= 21593590390253023722267234622513201,

%C a(10) <= 16412975107923138847512341751620644377601,

%C a(11) <= 325533792014488126487416882038879701391121. (End)

%C a(8) > 10^22. - _Amiram Eldar_, Apr 22 2024

%H Andrew Granville and Carl Pomerance, <a href="https://doi.org/10.1090/S0025-5718-01-01355-2">Two contradictory conjectures concerning Carmichael numbers</a>, Mathematics of Computation, Vol. 71, No. 238 (2002), pp. 883-908.

%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.

%Y Cf. A002997, A006931, A328935.

%K nonn,more

%O 3,1

%A _Amiram Eldar_, Oct 31 2019

%E Escape clause added by _Amiram Eldar_, Apr 22 2024