The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327681 Number of colored integer partitions of 2n using all colors of an n-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order. 2

%I

%S 1,1,21,619,32621,2619031,298688151,45747815408,9130881915237,

%T 2302153903685914,716914926484850891,270654298469985496639,

%U 121905995767297357401683,64616493201145984241278851,39838866068219563302546530228,28277347692301453998991014108124

%N Number of colored integer partitions of 2n using all colors of an n-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order.

%H Vaclav Kotesovec, <a href="/A327681/b327681.txt">Table of n, a(n) for n = 0..200</a> (terms 0..100 from Alois P. Heinz)

%F a(n) = A309973(2n,n).

%p b:= proc(n, i, k) option remember; `if`(n=0, 1,

%p `if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*

%p binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))

%p end:

%p a:= n-> add(b(2*n\$2, i)*(-1)^(n-i)*binomial(n, i), i=0..n):

%p seq(a(n), n=0..17);

%t b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] Binomial[Binomial[k + i - 1, i], j]*j!, {j, 0, n/i}]]];

%t a[n_] := Sum[b[2n, 2n, i] (-1)^(n-i) Binomial[n, i], {i, 0, n}];

%t a /@ Range[0, 17] (* _Jean-François Alcover_, Dec 18 2020, after _Alois P. Heinz_ *)

%Y Cf. A309973.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 21 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 08:21 EST 2021. Contains 340398 sequences. (Running on oeis4.)