OFFSET
0,3
COMMENTS
In general, for fixed m>=1, if g.f. = Product_{k>=1} (Product_{j=1..m} (1 + x^(j*k))), then a(n) ~ HarmonicNumber(m)^(1/4) * exp(Pi*sqrt(HarmonicNumber(m)*n/3)) / (2^((m+3)/2) * 3^(1/4) * n^(3/4)).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
a(n) ~ 137^(1/4) * exp(sqrt(137*n/5)*Pi/6) / (2^(9/2)*sqrt(3)*5^(1/4)*n^(3/4)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)) * (1+x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 16 2019
STATUS
approved