login
A326865
G.f.: Product_{k>=1} (1 + x^k/k^3) = Sum_{n>=0} a(n)*x^n/n!^3.
3
1, 1, 1, 35, 728, 48824, 7170984, 1418111064, 479963197440, 235727037775872, 170423013422592000, 163854260184125952000, 214343327259234349056000, 360795240553638133592064000, 778954481701636984110452736000, 2095759092922096320907078496256000
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * (n-1)!^3, where c = A073017 = Product_{k>=1} (1 + 1/k^3) = cosh(sqrt(3)*Pi/2)/Pi = 2.428189792098870328736...
MAPLE
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0, 1,
b(n, i-1)+b(n-i, min(n-i, i-1))*((i-1)!*binomial(n, i))^3))
end:
a:= n-> b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 27 2023
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[(1+x^k/k^3), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!^3
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jul 27 2019
STATUS
approved