login
E.g.f.: Product_{k>=1} 1/(1 - x^(4*k-3)/(4*k-3)).
4

%I #6 Jul 24 2019 18:09:19

%S 1,1,2,6,24,144,864,6048,48384,475776,4902912,53932032,647184384,

%T 8892398592,126430875648,1906924529664,30510792474624,539606261956608,

%U 9890452422918144,188459240926150656,3773077461736095744,81667528704634650624,1819516013302975561728

%N E.g.f.: Product_{k>=1} 1/(1 - x^(4*k-3)/(4*k-3)).

%H Vaclav Kotesovec, <a href="/A326780/b326780.txt">Table of n, a(n) for n = 0..447</a>

%H D. H. Lehmer, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa21/aa21123.pdf">On reciprocally weighted partitions</a>, Acta Arithmetica XXI (1972), 379-388 (Theorem 7).

%F a(n) ~ 2^(7/2) * exp(-gamma/4) * n^(1/4) * n! / Gamma(1/4)^2, where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function [Lehmer, 1972].

%t nmax = 25; CoefficientList[Series[1/Product[(1-x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!

%Y Cf. A007841, A294506, A309319, A326755, A326756, A326779.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Jul 24 2019