login
A325766
Number of integer partitions of n covering an initial interval of positive integers and containing their own multiset of multiplicities (as a submultiset).
1
1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 4, 5, 4, 6, 7, 8, 6, 12, 11, 19, 16, 22, 22, 25, 32, 38, 45, 45, 51, 53, 71, 69, 85, 92, 118, 125, 147, 149, 184, 187, 230, 254, 290, 317, 372, 397, 449, 502, 544, 616, 680, 758, 841, 930, 1042, 1151, 1262
OFFSET
0,12
COMMENTS
The Heinz numbers of these partitions are given by A325767.
EXAMPLE
The initial terms count the following partitions:
1: (1)
4: (2,1,1)
5: (2,2,1)
6: (2,2,1,1)
7: (3,2,1,1)
8: (3,2,1,1,1)
9: (3,2,2,1,1)
10: (3,2,2,1,1,1)
11: (3,3,2,2,1)
11: (3,3,2,1,1,1)
11: (3,2,2,2,1,1)
12: (4,3,2,1,1,1)
13: (4,3,2,2,1,1)
13: (4,3,2,1,1,1,1)
13: (3,3,3,2,1,1)
13: (3,3,2,2,2,1)
13: (3,3,2,2,1,1,1)
14: (4,3,2,2,1,1,1)
14: (3,3,3,2,2,1)
14: (3,3,3,2,1,1,1)
14: (3,3,2,2,2,1,1)
MATHEMATICA
submultQ[cap_, fat_]:=And@@Function[i, Count[fat, i]>=Count[cap, i]]/@Union[List@@cap]
Table[Length[Select[IntegerPartitions[n], Range[Length[Union[#]]]==Union[#]&&submultQ[Sort[Length/@Split[#]], Sort[#]]&]], {n, 0, 30}]
CROSSREFS
Cf. A000009 (partitions covering an initial interval), A055932, A114639, A114640, A290689, A324753, A325702, A325706, A325707, A325708, A325767.
Sequence in context: A260629 A339919 A112620 * A021321 A129676 A154947
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 19 2019
STATUS
approved