OFFSET
1,1
COMMENTS
Brink showed that prime numbers congruent to 49 or 121 modulo 240 are representable by exactly one of the quadratic forms x^2 + 150*y^2 or x^2 + 960*y^2. A325089 corresponds to those representable by the first form, and this sequence corresponds to those representable by the second form.
LINKS
David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
Rémy Sigrist, PARI program for A325090
Wikipedia, Kaplansky's theorem on quadratic forms
EXAMPLE
Regarding 9001:
- 9001 is a prime number,
- 9001 = 37*240 + 121,
- 9001 = 19^2 + 960*3^2,
- hence 9001 belongs to this sequence.
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Mar 28 2019
STATUS
approved