

A323583


Number of ways to split an integer partition of n into consecutive subsequences.


1



1, 1, 3, 7, 17, 37, 83, 175, 373, 773, 1603, 3275, 6693, 13557, 27447, 55315, 111397, 223769, 449287, 900795, 1805465, 3615929, 7240327, 14491623, 29001625, 58027017, 116093259, 232237583, 464558201, 929224589, 1858623819, 3717475031, 7435314013, 14871103069
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..33.


FORMULA

a(n) = A070933(n)/2.
O.g.f.: (1/2)*Product_{n >= 1} 1/(1  2*x^n).


EXAMPLE

The a(3) = 7 ways to split an integer partition of 3 into consecutive subsequences are (3), (21), (2)(1), (111), (11)(1), (1)(11), (1)(1)(1).


MATHEMATICA

Table[Sum[2^(Length[ptn]1), {ptn, IntegerPartitions[n]}], {n, 40}]


CROSSREFS

Cf. A006951, A070933, A100883, A279784, A279786, A323433, A323582.
Sequence in context: A026668 A111210 A033489 * A178941 A178155 A330457
Adjacent sequences: A323580 A323581 A323582 * A323584 A323585 A323586


KEYWORD

nonn


AUTHOR

Gus Wiseman, Jan 19 2019


STATUS

approved



