%I #17 Sep 08 2022 08:46:23
%S 1,1,8,405,229376,1827109375,257063481999360,755170478103207873707,
%T 54143353027014803410072371200,
%U 107483342384971486221625795626923693445,6647872853044955947850033397760000000000000000000,14166017880429890423491783342799863539312599105433301729629445
%N a(n) = Product_{k=1..n} (k^k + (n-k)^k).
%H G. C. Greubel, <a href="/A323575/b323575.txt">Table of n, a(n) for n = 0..36</a>
%F a(n) ~ c * n^(n*(n+1)/2) * 2^(n^2/2) / exp(n^2/2), where c = A303641 = 2.473655256632129487637893694272428036362097123254579382787777122619864038942...
%t Table[Product[k^k+(n-k)^k, {k, 1, n}], {n, 0, 12}]
%o (PARI) vector(12, n, n--; prod(k=1,n, k^k+(n-k)^k)) \\ _G. C. Greubel_, Feb 08 2019
%o (Magma) [1] cat [(&*[k^k +(n-k)^k: k in [1..n]]): n in [1..12]]; // _G. C. Greubel_, Feb 08 2019
%o (Sage) [product(k^k +(n-k)^k for k in (1..n)) for n in (0..12)] # _G. C. Greubel_, Feb 08 2019
%Y Cf. A323540-A323546, A323588, A323589, A303641.
%K nonn
%O 0,3
%A _Vaclav Kotesovec_, Jan 18 2019