%I #8 Jan 18 2019 01:32:49
%S 1,3,29,330,5377,106284,2547377,70958940,2261982661,81080297292,
%T 3229778757101,141513038307420,6764225843599273,350266412327423196,
%U 19532811858591859913,1167061754591024778060,74379247933571572471789,5036613358686837219949548,361117925009989327776929669,27330058953111646203005243580,2177250945821589231222543042577,182123381573106065455952821510524
%N E.g.f. exp( Integral A(x) dx ) = (B(x) + C(x))/9 where B(x) = 4 + Integral A(x)*C(x) dx and C(x) = 5 + Integral A(x)*B(x) dx such that A(x)^2 - 3^2 = B(x)^2 - 4^2 = C(x)^2 - 5^2.
%H Paul D. Hanna, <a href="/A323569/b323569.txt">Table of n, a(n) for n = 0..300</a>
%F E.g.f. exp( Integral A(x) dx ) where related series A(x), B(x), and C(x) satisfy the following relations.
%F (1a) A(x) = 3 + Integral B(x)*C(x) dx.
%F (1b) B(x) = 4 + Integral A(x)*C(x) dx.
%F (1c) C(x) = 5 + Integral A(x)*B(x) dx.
%F (2a) C(x)^2 - B(x)^2 = 9.
%F (2b) C(x)^2 - A(x)^2 = 16.
%F (2c) B(x)^2 - A(x)^2 = 7.
%F (3a) A(x)*B(x)*C(x) = A(x)*A'(x) = B(x)*B'(x) = C(x)*C'(x).
%F (3b) Integral 2*A(x)*B(x)*C(x) dx = A(x)^2 - 9 = B(x)^2 - 16 = C(x)^2 - 25.
%F (4a) B(x) + C(x) = 9 * exp( Integral A(x) dx ).
%F (4b) A(x) + C(x) = 8 * exp( Integral B(x) dx ).
%F (4c) A(x) + B(x) = 7 * exp( Integral C(x) dx ).
%e E.g.f. exp( Integral A(x) dx ) = 1 + 3*x + 29*x^2/2! + 330*x^3/3! + 5377*x^4/4! + 106284*x^5/5! + 2547377*x^6/6! + 70958940*x^7/7! + 2261982661*x^8/8! + 81080297292*x^9/9! + 3229778757101*x^10/10! + ...
%e RELATED SERIES.
%e A(x) = 3 + 20*x + 123*x^2/2! + 1540*x^3/3! + 23871*x^4/4! + 480260*x^5/5! + 11449599*x^6/6! + 319491220*x^7/7! + 10176946203*x^8/8! + 364884459380*x^9/9! + 14533663841187*x^10/10! + ... + A323563(n)*x^n/n! + ...
%e such that A(x) = 3 + Integral B(x)*C(x) dx.
%e B(x) = 4 + 15*x + 136*x^2/2! + 1470*x^3/3! + 24128*x^4/4! + 478320*x^5/5! + 11464768*x^6/6! + 319326960*x^7/7! + 10178837504*x^8/8! + 364859900160*x^9/9! + 14534008182784*x^10/10! + ... + A323564(n)*x^n/n! + ...
%e such that B(x) = 4 + Integral A(x)*C(x) dx.
%e C(x) = 5 + 12*x + 125*x^2/2! + 1500*x^3/3! + 24265*x^4/4! + 478236*x^5/5! + 11461625*x^6/6! + 319303500*x^7/7! + 10179006445*x^8/8! + 364862775468*x^9/9! + 14534000631125*x^10/10! + ... + A323565(n)*x^n/n! + ...
%e such that C(x) = 5 + Integral A(x)*B(x) dx.
%e A(x)^2 = 9 + 120*x + 1538*x^2/2! + 24000*x^3/3! + 480400*x^4/4! + 11444160*x^5/5! + 319475984*x^6/6! + 10177152000*x^7/7! + 364886675200*x^8/8! + 14533662074880*x^9/9! + 636813851059712*x^10/10! ...
%e such that C(x)^2 - A(x)^2 = 16 and B(x)^2 - A(x)^2 = 7.
%e A(x) + B(x) = 7 * exp( Integral C(x) dx ) = 7 + 35*x + 259*x^2/2! + 3010*x^3/3! + 47999*x^4/4! + 958580*x^5/5! + 22914367*x^6/6! + 638818180*x^7/7! + 20355783707*x^8/8! + 729744359540*x^9/9! + 29067672023971*x^10/10! + ...
%e A(x) + C(x) = 8 * exp( Integral B(x) dx ) = 8 + 32*x + 248*x^2/2! + 3040*x^3/3! + 48136*x^4/4! + 958496*x^5/5! + 22911224*x^6/6! + 638794720*x^7/7! + 20355952648*x^8/8! + 729747234848*x^9/9! + 29067664472312*x^10/10! + ...
%e B(x) + C(x) = 9 * exp( Integral A(x) dx ) = 9 + 27*x + 261*x^2/2! + 2970*x^3/3! + 48393*x^4/4! + 956556*x^5/5! + 22926393*x^6/6! + 638630460*x^7/7! + 20357843949*x^8/8! + 729722675628*x^9/9! + 29068008813909*x^10/10! + ...
%e exp( Integral B(x) dx ) = 1 + 4*x + 31*x^2/2! + 380*x^3/3! + 6017*x^4/4! + 119812*x^5/5! + 2863903*x^6/6! + 79849340*x^7/7! + 2544494081*x^8/8! + 91218404356*x^9/9! + 3633458059039*x^10/10! + ... + A323568(n)*x^n/n! + ...
%e exp( Integral C(x) dx ) = 1 + 5*x + 37*x^2/2! + 430*x^3/3! + 6857*x^4/4! + 136940*x^5/5! + 3273481*x^6/6! + 91259740*x^7/7! + 2907969101*x^8/8! + 104249194220*x^9/9! + 4152524574853*x^10/10! + ... + A323567(n)*x^n/n! + ...
%e A(x)*B(x)*C(x) = 60 + 769*x + 12000*x^2/2! + 240200*x^3/3! + 5722080*x^4/4! + 159737992*x^5/5! + 5088576000*x^6/6! + 182443337600*x^7/7! + 7266831037440*x^8/8! + 318406925529856*x^9/9! + 15219462171648000*x^10/10! + ... + A323566(n)*x^n/n! + ...
%e such that A(x)*B(x)*C(x) = A(x)*A'(x) = B(x)*B'(x) = C(x)*C'(x).
%o (PARI) {bc9(n) = my(A=3,B=4,C=5); for(i=1,n,
%o A = 3 + intformal(B*C +x*O(x^n));
%o B = 4 + intformal(A*C);
%o C = 5 + intformal(A*B););
%o n! * polcoeff( (B+C)/9 ,n)}
%o for(n=0,30,print1(bc9(n),", "))
%Y Cf. A323563 (A), A323564 (B), A323565 (C), A323566 (A*B*C), A323567 ((A+B)/7), A323568 ((A+C)/8).
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jan 18 2019