login
A321595
Decimal expansion of the sum of the reciprocal of the Genocchi numbers (of first kind) with even index (negated).
1
2, 8, 0, 5, 0, 4, 1, 4, 1, 7, 2, 5, 6, 5, 9, 8, 7, 8, 7, 7, 6, 8, 8, 7, 9, 4, 3, 1, 6, 3, 9, 9, 3, 3, 1, 7, 5, 8, 8, 5, 9, 6, 0, 4, 2, 3, 7, 5, 2, 6, 5, 9, 3, 9, 6, 5, 8, 2, 7, 8, 7, 0, 2, 7, 7, 8, 3, 8, 8, 3, 0, 4, 9, 1, 8, 2, 0, 4, 4, 8, 3, 9, 4, 6, 1, 6, 8, 7
OFFSET
0,1
COMMENTS
If also the reciprocal of G(1) = 1 is added we get .7194958582743401212231...
FORMULA
Equals Sum_{k>0} 1/A036968(2*k).
EXAMPLE
-.28050414170674716801892095479922438557021976395598927505615374848326107452...
MAPLE
with(numtheory): P:=proc(h) local a, x, k, n; a:=[seq(factorial(n)*coeff(series(2*x/(1+exp(x)), x=0, h+1), x, n), n=1..h)]; print(evalf(add(1/a[2*k], k=1..trunc(h/2)), 200)); end: P(300);
CROSSREFS
Sequence in context: A160584 A191334 A251794 * A336405 A188924 A011055
KEYWORD
nonn,cons,easy
AUTHOR
Paolo P. Lava, Nov 14 2018
STATUS
approved