login
A321304
Triangle T(n,f): the number of bicolored connected cubic graphs on 2n vertices with f vertices of the first color.
7
1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 5, 5, 5, 2, 2, 5, 10, 31, 46, 63, 46, 31, 10, 5, 19, 64, 248, 542, 931, 1052, 931, 542, 248, 64, 19, 85, 490, 2382, 7011, 15199, 23405, 27336, 23405, 15199, 7011, 2382, 490, 85, 509, 4595, 27233, 101002, 268675, 523246, 776657, 882321, 776657, 523246, 268675, 101002, 27233, 4595, 509
OFFSET
0,10
COMMENTS
These are connected, undirected, simple cubic graphs where each vertex has either the first or the second color. Row n has 2n+1 entries, 0<=f<=2n. The column f=0 (1, 0, 2, 5,...) counts the cubic graphs (A002851). The column f=1 (0, 1, 2, 10, 64, 490...) counts the rooted cubic graphs.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..440 (rows 0..20)
FORMULA
T(n,f) = T(n,2n-f).
EXAMPLE
The triangle starts:
0 vertices: 1;
2 vertices: 0, 0, 0;
4 vertices: 1, 1, 1, 1, 1;
6 vertices: 2, 2, 5, 5, 5, 2, 2;
8 vertices: 5, 10, 31, 46, 63, 46, 31, 10, 5;
10 vertices: 19, 64, 248, 542, 931, 1052, 931, 542, 248, 64, 19;
CROSSREFS
Columns f=0, 1, 2 are A002851, A361407, A361408.
Row sums are A361403.
Central coefficients are A361406.
Cf. A294783 (bicolored trees), A321305 (signed edges), A361361 (not necessarily connected).
Sequence in context: A213187 A317921 A195710 * A361361 A280511 A200997
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Nov 03 2018
EXTENSIONS
Terms a(49) and beyond from Andrew Howroyd, Mar 11 2023
STATUS
approved