login
A321024
Let j be one of the prime factors of k. Sequence lists numbers k such that the prime before j is a prime factor of k+1.
1
3, 5, 9, 14, 15, 20, 21, 27, 33, 35, 39, 45, 49, 50, 51, 55, 57, 63, 65, 69, 75, 80, 81, 84, 87, 93, 95, 99, 105, 110, 111, 117, 119, 123, 125, 129, 132, 135, 140, 141, 147, 152, 153, 154, 155, 159, 165, 170, 171, 177, 183, 185, 189, 195, 200, 201, 207, 208, 209
OFFSET
1,1
COMMENTS
Contains arbitrarily long strings of consecutive integers. Here are the shortest ones arranged by increasing numbers of terms:
{3}
{14,15}
{49,50,51}
{152,153,154,155}
{10217,10218,10219,10220,10221}
{634842, 634843, 634844, 634845, 634846, 634847}
{123945, 123946, 123947, 123948, 123949, 123950, 123951}
{2852055, 2852056, 2852057, 2852058, 2852059, 2852060, 2852061, 2852062}
{49057063, 49057064, 49057065, 49057066, 49057067, 49057068, 49057069, 49057070, 49057071}, etc.
LINKS
EXAMPLE
152 is divisible by 19 and 153 by 17;
153 is divisible by 3 and 154 by 2;
154 is divisible by 7 and 155 by 5;
155 is divisible by 5 and 156 by 3.
MAPLE
with(numtheory): P:=proc(n) local a, k;
a:=factorset(n) minus {2};
for k from 1 to nops(a) do if frac((n+1)/prevprime(a[k]))=0
then RETURN(n); fi; od; end: seq(P(i), i=2..300);
MATHEMATICA
Select[Range[210], Function[k, AnyTrue[DeleteCases[NextPrime[ FactorInteger[k][[All, 1]], -1 ], p_ /; p < 0], Mod[k + 1, #] == 0 &]]] (* Michael De Vlieger, Oct 31 2018 *)
PROG
(PARI) is(n) = my(f = factor(n>>valuation(n, 2))[, 1]); n++; for(i = 1, #f~, if(n % precprime(f[i]-1) == 0, return(1))); 0 \\ David A. Corneth, Oct 30 2018
CROSSREFS
Sequence in context: A306833 A146433 A134672 * A211389 A335193 A288259
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Oct 26 2018
STATUS
approved