OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
a(n) = (-1)^n * A320098(n).
Expansion of Product_{k>0} eta(q^(2*k))^3 / (eta(q^k)^2*eta(q^(4*k))).
Expansion of Product_{k>0} 1/theta_4(q^(2*k-1)).
MATHEMATICA
CoefficientList[Series[1/Product[EllipticTheta[4, 0, q^(2*k - 1)], {k, 1, 50}], {q, 0, 80}], q] (* G. C. Greubel, Oct 29 2018 *)
PROG
(PARI) q='q+O('q^80); Vec(prod(k=1, 50, eta(q^(2*k))^3/(eta(q^k)^2* eta(q^(4*k))) )) \\ G. C. Greubel, Oct 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 25 2018
STATUS
approved