login
G.f.: Product_{k>=1, j>=1} 1/((1 + x^(k*j)) * (1 - x^(k*j))^2).
2

%I #5 Oct 08 2018 09:19:39

%S 1,1,4,6,17,25,59,89,187,284,545,828,1505,2270,3930,5904,9861,14695,

%T 23827,35248,55775,81882,126874,184870,281467,407065,610193,876282,

%U 1295892,1848144,2700398,3825912,5530337,7786022,11145541,15597196,22131170,30792303

%N G.f.: Product_{k>=1, j>=1} 1/((1 + x^(k*j)) * (1 - x^(k*j))^2).

%C Convolution of A288007 and A320236.

%H Vaclav Kotesovec, <a href="/A320245/b320245.txt">Table of n, a(n) for n = 0..10000</a>

%t nmax = 50; CoefficientList[Series[Product[1/((1+x^(k*j))*(1-x^(k*j))^2), {k, 1, nmax}, {j, 1, Floor[nmax/k]+1}], {x, 0, nmax}], x]

%Y Cf. A158441, A320236, A320238.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Oct 08 2018