login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318404
a(n) = F(n+1)^4 - 4*F(n-1)*F(n)^3, where F(n) = A000045(n), the n-th Fibonacci number.
2
1, 1, 12, 49, 409, 2596, 18321, 124177, 854764, 5849089, 40115241, 274888516, 1884285217, 12914634529, 88519396044, 606717892561, 4158514347961, 28502860300132, 195361565985969, 1339027949145649, 9177834477168556, 62905812346085281, 431162854681140297
OFFSET
0,3
COMMENTS
a(n) is the number of Markov equivalence classes whose skeleton is a spider graph with four legs, each of which contains n nodes of degree at most two.
A001519 admits the related formula A001519(n) = F(n+1)^2 - 2*F(n-1)*F(n).
LINKS
A. Radhakrishnan, L. Solus, and C. Uhler. Counting Markov equivalence classes for DAG models on trees, arXiv:1706.06091 [math.CO], 2017; Discrete Applied Mathematics 244 (2018): 170-185.
FORMULA
G.f.: (-1 + 4*x + 8*x^2 + 11*x^3 - 4*x^4)/(-1 + 5*x + 15*x^2 - 15*x^3 - 5*x^4 + x^5). - Robert Israel, Aug 26 2018
MAPLE
f:= gfun:-rectoproc({a(n+5)-5*a(n+4)-15*a(n+3)+15*a(n+2)+5*a(n+1)-a(n), a(0)=1, a(1)=1, a(2)=12, a(3)=49, a(4)=409}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Aug 26 2018
MATHEMATICA
Table[Fibonacci[n + 1]^4 - 4 Fibonacci[n - 1] Fibonacci[n]^3, {n, 0, 25}] (* Vincenzo Librandi, Aug 26 2018 *)
CoefficientList[Series[(-1 + 4 x + 8 x^2 + 11 x^3 - 4 x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5), {x, 0, 50}], x] (* Stefano Spezia, Sep 03 2018 *)
PROG
(SageMath)
def a(n):
return fibonacci(n+1)^4-4*fibonacci(n-1)*fibonacci(n)^3
[a(n) for n in range(20)]
(Magma) [Fibonacci(n+1)^4-4*Fibonacci(n-1)*Fibonacci(n)^3: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
(PARI) a(n) = fibonacci(n+1)^4 - 4*fibonacci(n-1)*fibonacci(n)^3; \\ Michel Marcus, Aug 26 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Liam Solus, Aug 26 2018
EXTENSIONS
a(0) = 1 prepended by Vincenzo Librandi, Aug 26 2018
STATUS
approved