login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317979 Numbers k such that k^4 + k^3 + k^2 + 1 is prime. 1
2, 4, 6, 8, 14, 22, 26, 32, 36, 54, 82, 96, 98, 108, 116, 120, 124, 132, 144, 152, 162, 164, 166, 182, 226, 240, 244, 246, 252, 254, 264, 266, 274, 276, 312, 314, 322, 328, 330, 352, 364, 368, 372, 382, 406, 410, 420, 422, 428, 430, 432, 438, 456 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The numbers in the sequence are all even numbers.

For k = 11*m - 4, (k^4 + k^3 + k^2 + 1)/11 is an integer, so there is no number of the form k = 11*m - 4 in the sequence.

LINKS

Daniel Starodubtsev, Table of n, a(n) for n = 1..10000

EXAMPLE

2^4 + 2^3 + 2^2 + 1 = 29 is prime, so 2 is in the sequence.

MATHEMATICA

Select[Range[0, 1000], PrimeQ[#^4 + #^3 + #^2 + 1] &]

PROG

(PARI) for(n=1, 1000, if(ispseudoprime(n^4 + n^3 + n^2 + 1), print1(n, ", ")))

(MAGMA) [n: n in [0..700] |IsPrime(n^4 + n^3 + n^2 + 1)]; // Vincenzo Librandi, Sep 08 2018

CROSSREFS

Cf. A005574, A119863.

Sequence in context: A156097 A288793 A039597 * A167229 A192333 A068902

Adjacent sequences:  A317976 A317977 A317978 * A317980 A317981 A317982

KEYWORD

nonn

AUTHOR

Jinyuan Wang, Aug 12 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 21:05 EDT 2021. Contains 343177 sequences. (Running on oeis4.)