This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317750 a(n) is the least nonnegative integer, not yet present in the sequence, such that sums of some of the terms up to a(n) produce exactly n distinct primes. 0
 0, 2, 1, 3, 4, 48, 152, 1762, 9792, 303074, 49728560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Collected primes from a(1) on: 2, 3, 5, 7, 53, 157, 1811, 9949, 303283, 49730477, ... If we drop the unicity constraint, then we obtain: 0, 2, followed by the prime gaps (A001223). - Rémy Sigrist, Aug 07 2018 a(11) > 1.3*10^10. - Giovanni Resta, Aug 09 2018 LINKS EXAMPLE a(0) = 0, no prime. a(1) = 2, one prime: 2. a(2) = 1, two primes: 2 and 1 + 2 = 3. a(3) = 3, three primes: 2, 3 and 3 + 2 = 5. a(4) = 4, four primes: 2, 3, 3 + 2 = 4 + 1 = 5 and 4 + 3 = 4 + 2 + 1 = 7. Next term is a(5) = 48 because any integer from 5 to 47 generates more than 5 primes. For instance, 33 gives 33 + 4 = 37 and 33 + 4 + 3 + 1 = 41 that with 2, 3, 5 and 7 sum to 6 primes. MAPLE with(combinat): P:=proc(q) local a, c, d, f, g, j, k, n, ok, x; a:=[0, 2]; print(0); print(2); x:=1; for n from 2 to q do for j from x to q do if numboccur(a, j)=0 then c:=[op(a), j]; d:=choose(c); f:={}; for k from 1 to nops(d) do g:=convert(d[k], `+`); if isprime(g) then f:=f union {g}; fi; od; ok:=1; if nops(f)=n then for k from 1 to n do if numboccur(f, f[k])>1 then ok:=0; break; fi; od; else ok:=0; fi; if ok=1 then a:=[op(a), j]; x:=j+1; print(j); break; fi; fi; od; od; end: P(10^9); MATHEMATICA a = s = {0}; p = {}; Do[t=1; While[MemberQ[a, t] || Length[q = Union[p, Select[s + t, PrimeQ]]] != n, t++]; AppendTo[a, t]; p = q; s = Union[s, s + t], {n, 8}]; a (* Giovanni Resta, Aug 09 2018 *) CROSSREFS Cf. A000040, A001223. Sequence in context: A217103 A099866 A276811 * A188732 A085189 A130466 Adjacent sequences:  A317747 A317748 A317749 * A317751 A317752 A317753 KEYWORD nonn,more AUTHOR Paolo P. Lava, Aug 06 2018 EXTENSIONS a(10) from Giovanni Resta, Aug 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 04:57 EDT 2019. Contains 328145 sequences. (Running on oeis4.)