login
A316719
Expansion of Product_{k=1..7} (1+x^(2*k-1))/(1-x^(2*k)).
6
1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 54, 68, 83, 100, 122, 149, 179, 212, 253, 303, 357, 417, 490, 575, 668, 772, 893, 1033, 1187, 1356, 1551, 1773, 2015, 2281, 2583, 2922, 3291, 3695, 4147, 4650, 5197, 5791, 6450, 7179, 7966, 8818, 9757, 10785, 11893
OFFSET
0,4
LINKS
MATHEMATICA
nmax=60; CoefficientList[Series[Product[(1 + x^(2 k - 1)) / (1 - x^(2 k)), {k, 1, 7}], {x, 0, nmax}], x] (* Vincenzo Librandi, Jul 12 2018 *)
PROG
(PARI) N=99; x='x+O('x^N); Vec(prod(k=1, 7, (1+x^(2*k-1))/(1-x^(2*k))))
CROSSREFS
Product_{k=1..b} (1+x^(2*k-1))/(1-x^(2*k)): A000012 (b=1), A004525(n+1) (b=2), A000933(n+5) (b=3), A089597 (b=4), A014670 (b=5), A316718 (b=6), this sequence (b=7), A316720 (b=8), A316721 (b=9), A316722 (b=10).
Cf. A316675.
Sequence in context: A036034 A280949 A316718 * A316720 A316721 A316722
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 11 2018
STATUS
approved