OFFSET
1,1
EXAMPLE
L.g.f. A(x) = 3*x + 27*x^2/2 + 5967*x^3/3 + 5697567*x^4/4 + 31847802183*x^5/5 + 1195671270431187*x^6/6 + 326058737699333461707*x^7/7 + 675917435446065515610996255*x^8/8 + ...
such that
1 = 1 + (log(1 + 3*x) - A(x)) + (log(1 + 3^2*x) - A(x))^2/2! + (log(1 + 3^3*x) - A(x))^3/3! + (log(1 + 3^4*x) - A(x))^4/4! + (log(1 + 3^5*x) - A(x))^5/5! + ... + (log(1 + 3^n*x) - A(x))^n / n! + ...
RELATED SERIES.
exp(A(x)) = 1 + 3*x + 18*x^2 + 2034*x^3 + 1430514*x^4 + 6373869750*x^5 + 199297681460658*x^6 + 46580417624524112586*x^7 + ... + A316369(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[3]); for(i=1, n, A=concat(A, 0); A[#A] = Vec(sum(n=0, #A+1, (log(1 + 3^n*x +x*O(x^#A) ) - x*Ser(A))^n/n! ))[#A+1]); n*A[n]}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2018
STATUS
approved