The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A316363 O.g.f. A(x) satisfies: Sum_{n>=1} (x + (-1)^n*A(x))^n / n  =  0. 3

%I

%S 1,2,4,14,52,204,840,3574,15588,69332,313272,1433964,6635400,30988312,

%T 145871248,691403686,3296979524,15805913476,76135613784,368304184900,

%U 1788518253080,8715477003688,42605364060656,208878870197436,1026781984000680,5059692979338824,24989145569112880,123676728224877464,613295203581498768,3046761116509464624

%N O.g.f. A(x) satisfies: Sum_{n>=1} (x + (-1)^n*A(x))^n / n = 0.

%H Vaclav Kotesovec, <a href="/A316363/b316363.txt">Table of n, a(n) for n = 1..200</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:

%F (1a) 0 = Sum_{n>=1} (x + (-1)^n*A(x))^n / n,

%F (1b) 0 = arctanh(x - A(x)) - log(1 - (x + A(x))^2)/2,

%F (1c) 1 - (x + A(x))^2 = (1+x - A(x))/(1-x + A(x)).

%F (2a) A(x) = x + (x + A(x))^2/(2 - (x + A(x))^2).

%F (2b) 0 = (2*x + x^2 - x^3) - (2 - 2*x + x^2)*A(x) + (1+x)*A(x)^2 + A(x)^3.

%F (3) A(-A(-x)) = x.

%F (4a) A(x) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).

%F (4b) A(x) = x + 2 * Series_Reversion( x/sqrt(1 + 2*x^2) - x^2 )^2.

%F a(n) ~ sqrt(r*(r*(1-r) + s*(1+s)) / (1 + r + 3*s)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 0.1912388335306640951515262439910852999016888421453... and s = 0.444963791747610196027930141875385171928290741217... are real roots of the system of equations r^2*(-1 + r + s) = s*(-2 + s + s^2) + r*(2 + 2*s + s^2), 2*r*(1 + s) + s*(2 + 3*s) = 2 + r^2. - _Vaclav Kotesovec_, Jul 06 2018

%e G.f.: A(x) = x + 2*x^2 + 4*x^3 + 14*x^4 + 52*x^5 + 204*x^6 + 840*x^7 + 3574*x^8 + 15588*x^9 + 69332*x^10 + 313272*x^11 + 1433964*x^12 + ...

%e such that

%e 0 = (x - A(x)) + (x + A(x))^2/2 + (x - A(x))^3/3 + (x + A(x))^4/4 + (x - A(x))^5/5 + (x + A(x))^6/6 + (x - A(x))^7/7 + (x + A(x))^8/8 + ...

%e thus arctanh(x - A(x)) - log(1 - (x + A(x))^2)/2 = 0

%e so that (1+x - A(x))/(1-x + A(x)) = 1 - (x + A(x))^2.

%e RELATED SERIES.

%e Series_Reversion(A(x)) = x - 2*x^2 + 4*x^3 - 14*x^4 + 52*x^5 - 204*x^6 + 840*x^7 - 3574*x^8 + ... + (-1)^(n-1)*a(n)*x^n + ...

%e Series_Reversion(x + A(x)) = 1/2*x - 1/4*x^2 - 1/8*x^4 - 1/16*x^6 - 1/32*x^8 - 1/64*x^10 - 1/128*x^12 - 1/256*x^14 + ... = x*(1 - x)*(2 + x)/(4 - 2*x^2); equivalently, Series_Reversion((x + A(x))/2) = x - x^2/(1 - 2*x^2).

%e Let F(x) be the g.f. of A317800, then A(x) = F(F(x)), where

%e F(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 33*x^6 + 105*x^7 + 354*x^8 + 1214*x^9 + 4206*x^10 + ... + A317800(n)*x^n + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, (x + (-1)^m*x*Ser(A))^m/m), #A)); A[n]}

%o for(n=1,30, print1(a(n),", "))

%Y Cf. A317800.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jul 03 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 19:30 EDT 2020. Contains 336451 sequences. (Running on oeis4.)