login
A316095
Numbers n such that A(n+1) = A(n) + 3, where A() = A005101() are the abundant numbers.
2
231, 232, 385, 386, 544, 545, 699, 700, 858, 859, 1014, 1015, 1172, 1173, 1326, 1327, 1431, 1488, 1600, 1601, 1645, 1646, 1699, 1700, 1806, 1807, 1850, 1959, 1960, 2015, 2016, 2093, 2094, 2119, 2120, 2221, 2222, 2272, 2273, 2378, 2379, 2433, 2434, 2583, 2584
OFFSET
1,1
FORMULA
Sequence is { n | A005101(n+1) = A005101(n) + 3 }.
Sequence is { n | A125115(n) = 3 }.
MAPLE
with(numtheory): A:=select(n->sigma(n)>2*n, [$1..20000]): a:=select(j->A[j+1]=A[j]+3, [$1..nops(A)-1]);
MATHEMATICA
Position[Map[{#1, #2 - 3} & @@ # &, Partition[Select[Range[12000], DivisorSigma[1, #] > 2 # &], 2, 1]], _?(SameQ @@ # &)][[All, 1]] (* Michael De Vlieger, Jun 29 2018 *)
PROG
(GAP) A:=Filtered([1..20000], n->Sigma(n)>2*n);; a:=Filtered([1..Length(A)-1], i->A[i+1]=A[i]+3);
(PARI) lista(nn) = {my(va = select(x->(sigma(x) > 2*x), [1..nn]), dva = vector(#va-1, k, va[k+1] - va[k])); select(x->(x==3), dva, 1); } \\ Michel Marcus, Jul 03 2018
CROSSREFS
A228382 is the main sequence for this entry.
Numbers n such that A(n+1) = A(n) + k, where A() = A005101() are the abundant numbers: A169822 (k=1), A303741 (k=2), this sequence (k=3), A316096 (k=4), A316097 (k=6).
Cf. A005101.
Sequence in context: A323321 A156742 A031965 * A345795 A088289 A046009
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Jun 25 2018
STATUS
approved