login
A309940
a(1) = 1, thereafter a(n) is the next prime after a(n-1), but written backwards in base n, then converted back to decimal.
3
1, 1, 2, 3, 1, 2, 3, 5, 7, 11, 23, 62, 31, 128, 173, 59, 173, 315, 263, 193, 177, 74, 233, 561, 347, 299, 281, 94, 293, 220, 193, 166, 71, 172, 1159, 428, 899, 1277, 1241, 391, 1157, 1245, 115, 1718, 533, 1621, 1397, 365, 1183, 1873, 2127, 2588, 2539, 317, 61
OFFSET
1,3
COMMENTS
Conjecture: a(n) < n^2 for all n > 1.
From Robert Dougherty-Bliss, Sep 17 2019: (Start)
a(n) > n for n >= 10, as shown in the linked proof below.
The conjecture a(n) < n^2 holds for all 1 < n < N if each gap between consecutive squares < N contains a prime. In particular, the conjecture is true if Legendre's conjecture is true.
(End)
LINKS
EXAMPLE
The next prime after a(10) = 11 is 13:
- 13 in base 11 is "12",
- reading backwards we obtain "21" = 2*11 + 1 = 23,
- hence a(11) = 23.
MATHEMATICA
nxt[{n_, p_}]:={n+1, FromDigits[Reverse[IntegerDigits[NextPrime[ p], n+1]], n+1]}; NestList[nxt, {1, 1}, 60][[All, 2]] (* Harvey P. Dale, Jul 29 2021 *)
PROG
(PARI) for (n=1, 55, print1 (v=if(n==1, 1, fromdigits(Vecrev(digits(nextprime(1+v), n)), n)) ", "))
CROSSREFS
Cf. A326344.
The distinct numbers are listed in increasing order in A328076. See also A328257.
Sequence in context: A067280 A167157 A238837 * A081514 A109206 A292746
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Sep 14 2019
EXTENSIONS
Name amended by Felix Fröhlich, Sep 16 2019
STATUS
approved