The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309865 Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 5
 2, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 11, 5, 2, 2, 6, 34, 34, 6, 2, 2, 7, 156, 2136, 156, 7, 2, 2, 8, 1044, 7013320, 7013320, 1044, 8, 2, 2, 9, 12346, 1788782616656, 29281354514767168, 1788782616656, 12346, 9, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS T(n,k) is defined for n,k >= 0.  The triangle contains only the terms with k<=n.  T(n,k) = 1 for k>n. See A000088 and A000665 for more references. LINKS Alois P. Heinz, Rows n = 0..14, flattened Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989. Wikipedia, Hypergraph FORMULA T(n,k) = T(n,n-k) for 0 <= k <= n. EXAMPLE Triangle T(n,k) begins:   2;   2, 2;   2, 3,    2;   2, 4,    4,       2;   2, 5,   11,       5,       2;   2, 6,   34,      34,       6,    2;   2, 7,  156,    2136,     156,    7, 2;   2, 8, 1044, 7013320, 7013320, 1044, 8, 2;   ... MAPLE g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->      [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]): h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]      /igcd(t, p[i]))=0, [\$1..q]), mul((m-> binomial(m, k[i]*m      /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(     `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)): b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1\$n]))      /n!, add(b(n-i*j, i-1, [l[], i\$j], v)/j!/i^j, j=0..n/i)): T:= proc(n, k) option remember; `if`(k>n-k,       T(n, n-k), b(n\$2, [], k))     end: seq(seq(T(n, k), k=0..n), n=0..9); CROSSREFS Columns k=0..10 give: A007395, A000027, A000088, A000665, A051240, A051249, A309860, A309861, A309862, A309863, A309864. Cf. A309858 (the same as square array). Sequence in context: A308622 A198897 A201375 * A128764 A324818 A233417 Adjacent sequences:  A309862 A309863 A309864 * A309866 A309867 A309868 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Aug 20 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 04:35 EST 2020. Contains 331183 sequences. (Running on oeis4.)