OFFSET
0,3
FORMULA
G.f.: Product_{k>=0} 1/(1 - x^(2^k) - x^(2^(k+1)) - x^(3*2^k) - x^(2^(k+2))).
MATHEMATICA
nmax = 35; A[_] = 1; Do[A[x_] = A[x^2]/(1 - x - x^2 - x^3 - x^4) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 35; CoefficientList[Series[Product[1/(1 - x^(2^k) - x^(2^(k + 1)) - x^(3 2^k) - x^(2^(k + 2))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 13 2019
STATUS
approved