login
A309703
G.f. A(x) satisfies: A(x) = A(x^2) / (1 - x - x^2 - x^3 - x^4).
1
1, 1, 3, 5, 13, 22, 48, 88, 184, 342, 684, 1298, 2556, 4880, 9506, 18240, 35366, 67992, 131446, 253044, 488532, 941014, 1815334, 3497924, 6745360, 12999632, 25063130, 48306046, 93123674, 179492482, 346003572, 666925774, 1285580868, 2478002696, 4776580902, 9207090240
OFFSET
0,3
FORMULA
G.f.: Product_{k>=0} 1/(1 - x^(2^k) - x^(2^(k+1)) - x^(3*2^k) - x^(2^(k+2))).
MATHEMATICA
nmax = 35; A[_] = 1; Do[A[x_] = A[x^2]/(1 - x - x^2 - x^3 - x^4) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 35; CoefficientList[Series[Product[1/(1 - x^(2^k) - x^(2^(k + 1)) - x^(3 2^k) - x^(2^(k + 2))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 13 2019
STATUS
approved