OFFSET
0,6
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} ((i mod 2) + (j mod 2) + (k mod 2) + (l mod 2) + ((n-i-j-k-l) mod 2)).
G.f.: -x^5*(2*x^11-x^10+2*x^8+4*x^6-4*x^5+5*x^4-2*x^3+5*x^2-6*x+5) / ((x^2+1) *(x^2+x+1) *(x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) *(x^4+1) *(x+1)^3 *(x-1)^5). - Alois P. Heinz, Aug 07 2019
EXAMPLE
The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 20 32 38 56 66 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 12 2019
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Mod[i, 2] + Mod[j, 2] + Mod[k, 2] + Mod[l, 2] + Mod[n - i - j - k - l, 2], {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 06 2019
STATUS
approved