login
a(n) = Sum_{k=0..n} (p(n,k) mod 2), where p(n,k) = number of partitions of n into k parts.
0

%I #8 Jul 18 2019 06:15:41

%S 1,1,2,3,3,3,5,5,6,6,8,8,9,7,11,12,11,11,13,12,9,14,12,13,13,12,14,16,

%T 16,19,16,18,21,19,24,23,21,17,23,23,24,23,26,25,25,24,28,20,25,25,28,

%U 29,27,27,29,28,35,28,30,30,29,31,32,33,30,32,36,35,35,35,40,35,41,41,38,42,43

%N a(n) = Sum_{k=0..n} (p(n,k) mod 2), where p(n,k) = number of partitions of n into k parts.

%C Number of odd entries in row n of triangle of partition numbers (A008284, A072233).

%t Table[Sum[Mod[Length[IntegerPartitions[n, {k}]], 2], {k, 0, n}], {n, 0, 76}]

%Y Cf. A007306, A008284, A071754, A072233.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Jul 18 2019