login
A308599
Number of (not necessarily maximal) cliques in the n-alternating group graph.
1
2, 8, 45, 301, 2281, 19321, 181441, 1874881, 21168001, 259459201, 3432844801, 48778329601, 741015475201, 11987015040001, 205740767232001, 3734717995008001, 71493173047296001, 1439467021504512001, 30411275102208000001, 672697405260840960001, 15548676734256906240001
OFFSET
2,1
COMMENTS
The maximum size of a clique in the n-alternating graph is 3. Cliques are then triangles, edges, vertices and the empty set. - Andrew Howroyd, Sep 08 2019
LINKS
Eric Weisstein's World of Mathematics, Alternating Group Graph
Eric Weisstein's World of Mathematics, Clique
FORMULA
a(n) = 1 + (4*n - 5)*n!/6. - Andrew Howroyd, Sep 08 2019
PROG
(PARI) a(n) = 1 + (4*n - 5)*n!/6; \\ Andrew Howroyd, Sep 08 2019
CROSSREFS
Sequence in context: A258622 A290442 A316367 * A367316 A139678 A290445
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 09 2019
EXTENSIONS
Offset corrected and terms a(7) and beyond from Andrew Howroyd, Sep 08 2019
STATUS
approved