login
A308509
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n/d).
6
1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 9, 2, 1, 17, 28, 33, 6, 4, 1, 33, 82, 129, 26, 24, 2, 1, 65, 244, 513, 126, 182, 8, 4, 1, 129, 730, 2049, 626, 1458, 50, 41, 3, 1, 257, 2188, 8193, 3126, 11954, 344, 577, 37, 4, 1, 513, 6562, 32769, 15626, 99594, 2402, 8705, 811, 68, 2
OFFSET
1,3
LINKS
FORMULA
L.g.f. of column k: -log(Product_{j>=1} (1 - j^k*x^j)^(1/j)).
A(n,k) = Sum_{d|n} (n/d)^(k*d).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, 65, ...
2, 4, 10, 28, 82, 244, 730, ...
3, 9, 33, 129, 513, 2049, 8193, ...
2, 6, 26, 126, 626, 3126, 15626, ...
4, 24, 182, 1458, 11954, 99594, 840242, ...
MATHEMATICA
T[n_, k_] := DivisorSum[n, #^(k*n/#) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
PROG
(PARI) T(n, k) = sumdiv(n, d, (n/d)^(k*d));
matrix(9, 9, n, k, T(n, k-1)) \\ Michel Marcus, Jun 02 2019
CROSSREFS
Columns k=0..3 give A000005, A055225, A073705, A073706.
Cf. A294579.
Sequence in context: A129262 A322263 A279394 * A280514 A246105 A211980
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jun 02 2019
STATUS
approved