This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307525 Expansion of e.g.f. Product_{k>=1} 1/(1 - log(1/(1 - x))^k/k!). 0
 1, 1, 4, 21, 146, 1240, 12479, 144970, 1908682, 28079550, 456458832, 8125189974, 157190542607, 3284222304545, 73705849847317, 1768479436456975, 45180024672023814, 1224529894981726614, 35096983241255523572, 1060703070504583747430, 33714045363258013414692 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} log(1/(1 - x))^(j*k)/(k*(j!)^k)). a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A005651(k). a(n) ~ c * sqrt(2*Pi) * n^(n + 1/2) / (exp(1) - 1)^(n+1), where c = A247551 = Product_{k>=2} 1/(1-1/k!). - Vaclav Kotesovec, Apr 13 2019 MATHEMATICA nmax = 20; CoefficientList[Series[Product[1/(1 - Log[1/(1 - x)]^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! nmax = 20; CoefficientList[Series[Exp[Sum[Sum[Log[1/(1 - x)]^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Abs[StirlingS1[n, k]] Total[Apply[Multinomial, IntegerPartitions[k], {1}]], {k, 0, n}], {n, 0, 20}] CROSSREFS Cf. A005651, A140585, A306039, A320349. Sequence in context: A305986 A233481 A308337 * A163861 A247054 A006153 Adjacent sequences:  A307522 A307523 A307524 * A307526 A307527 A307528 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 12:22 EDT 2019. Contains 327078 sequences. (Running on oeis4.)