login
A306879
Smallest number m such that m, m+1, and m+2 all have exactly 2p divisors, where p = prime(n).
3
33, 242, 7939375, 76571890623, 104228508212890623, 1489106237081787109375, 273062471666259918212890623, 804505911103256259918212890623, 490685203356467392256259918212890623, 6794675247932944436619977392256259918212890623, 329757106427071213106619977392256259918212890623
OFFSET
1,1
COMMENTS
a(4) was incorrect in "Some new results on consecutive equidivisible integers".
LINKS
Vasilii A. Dziubenko, Vladimir A. Letsko, Consecutive positive integers with the same number of divisors, arXiv:1811.05127 [math.NT], 2018.
Vladimir A. Letsko, Some new results on consecutive equidivisible integers, arXiv:1510.07081 [math.NT], 2015.
EXAMPLE
33, 34, 35 all have exactly 2*prime(1) = 4 divisors, and 33 is the smallest number with this property, so a(1) = 33.
CROSSREFS
Cf. A274639.
A subsequence of A075040.
Sequence in context: A075040 A353938 A274639 * A178448 A351268 A088703
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Mar 14 2019
STATUS
approved