login
A304773
Number of nX6 0..1 arrays with every element unequal to 0, 1, 2, 3 or 7 king-move adjacent elements, with upper left element zero.
1
32, 293, 303, 1094, 5060, 23872, 100581, 453229, 2074725, 9305892, 42095154, 190918408, 862112759, 3898162463, 17637785189, 79741676394, 360592003562, 1630844217696, 7374723507359, 33349649581397, 150817182367371
OFFSET
1,1
COMMENTS
Column 6 of A304775.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) -9*a(n-2) +24*a(n-3) -83*a(n-4) +96*a(n-5) +65*a(n-6) -347*a(n-7) +719*a(n-8) -1133*a(n-9) +565*a(n-10) +575*a(n-11) -809*a(n-12) +2214*a(n-13) -4033*a(n-14) +3589*a(n-15) -2481*a(n-16) +1169*a(n-17) +418*a(n-18) -1208*a(n-19) +2927*a(n-20) -4359*a(n-21) +2242*a(n-22) -2037*a(n-23) +1852*a(n-24) +2718*a(n-25) -4231*a(n-26) +3003*a(n-27) -4369*a(n-28) +4939*a(n-29) -2463*a(n-30) +504*a(n-31) +468*a(n-32) -1053*a(n-33) +717*a(n-34) -49*a(n-35) -360*a(n-36) +510*a(n-37) -551*a(n-38) +317*a(n-39) -103*a(n-40) +77*a(n-41) -30*a(n-42) -9*a(n-43) +6*a(n-44) -6*a(n-45) +4*a(n-46) for n>50
EXAMPLE
Some solutions for n=5
..0..1..1..1..1..0. .0..0..0..0..1..1. .0..0..0..0..0..0. .0..1..1..1..0..0
..1..0..1..1..0..1. .0..0..0..0..0..1. .0..1..1..0..1..0. .1..0..1..0..1..1
..1..1..1..1..1..1. .0..0..0..0..0..0. .0..0..0..0..0..1. .1..1..1..1..1..1
..1..1..1..1..1..1. .0..0..1..1..0..0. .0..0..0..0..1..0. .0..1..1..1..1..0
..0..0..0..0..0..0. .0..0..0..0..0..1. .1..0..0..0..0..0. .0..0..1..1..0..0
CROSSREFS
Cf. A304775.
Sequence in context: A297685 A303725 A305228 * A316516 A304470 A316287
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 18 2018
STATUS
approved