login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304710 Number of partitions of 2n whose Ferrers-Young diagram cannot be tiled with dominoes. 4
0, 0, 0, 1, 2, 6, 12, 25, 46, 85, 146, 250, 410, 666, 1053, 1648, 2527, 3840, 5747, 8525, 12496, 18172, 26165, 37408, 53038, 74714, 104502, 145315, 200808, 276030, 377339, 513342, 694925, 936590, 1256670, 1679310, 2234994, 2963430, 3914701, 5153434, 6760937 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

Also the number of partitions of 2n where the number of odd parts in even positions differs from the number of odd parts in odd positions.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

Eric Weisstein's World of Mathematics, Ferrers Diagram

Wikipedia, Domino

Wikipedia, Domino tiling

Wikipedia, Ferrers diagram

Wikipedia, Mutilated chessboard problem

Wikipedia, Partition (number theory)

Wikipedia, Young tableau, Diagrams

FORMULA

a(n) = A058696(n) - A000712(n) = A000041(2*n) - A000712(n).

a(n) = A144064(2*n,1) - A144064(n,2).

a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n) * (1 - 2/(3^(1/4)*n^(1/4)) - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) / sqrt(n) + (Pi/(6*3^(3/4)) + 15*3^(1/4)/(8*Pi)) / n^(3/4)). - Vaclav Kotesovec, May 25 2018

EXAMPLE

a(3) = 1: the Ferrers-Young diagram of 321 cannot be tiled with dominoes because the numbers of white and black squares (when colored like a chessboard) are different but each domino covers exactly one white and one black square:

   ._____.

   |_|X|_|

   |X|_|

   |_|

.

a(4) = 2: 32111, 521.

a(5) = 6: 3211111, 32221, 4321, 52111, 541, 721.

a(6) = 12: 321111111, 3222111, 33321, 432111, 5211111, 52221, 54111, 543, 6321, 72111, 741, 921.

MAPLE

b:= proc(n, i, p, c) option remember; `if`(n=0, `if`(c=0, 0, 1), `if`(i<1, 0,

      b(n, i-1, p, c)+b(n-i, min(n-i, i), -p, c+`if`(i::odd, p, 0))))

    end:

a:= n-> b(2*n$2, 1, 0):

seq(a(n), n=0..50);

# second Maple program:

a:= n-> (p-> p(2*n)-add(p(j)*p(n-j), j=0..n))(combinat[numbpart]):

seq(a(n), n=0..50);

# third Maple program:

b:= proc(n, k) option remember; `if`(n=0, 1, add(

      numtheory[sigma](j)*b(n-j, k), j=1..n)*k/n)

    end:

a:= n-> b(2*n, 1)-b(n, 2):

seq(a(n), n=0..50);

CROSSREFS

Column k=0 of A304789.

Cf. A000041, A000712, A058696, A144064, A182616, A304662.

Sequence in context: A294565 A210068 A210633 * A137829 A262196 A261667

Adjacent sequences:  A304707 A304708 A304709 * A304711 A304712 A304713

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 17 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 04:27 EST 2020. Contains 331133 sequences. (Running on oeis4.)