login
A304710
Number of partitions of 2n whose Ferrers-Young diagram cannot be tiled with dominoes.
5
0, 0, 0, 1, 2, 6, 12, 25, 46, 85, 146, 250, 410, 666, 1053, 1648, 2527, 3840, 5747, 8525, 12496, 18172, 26165, 37408, 53038, 74714, 104502, 145315, 200808, 276030, 377339, 513342, 694925, 936590, 1256670, 1679310, 2234994, 2963430, 3914701, 5153434, 6760937
OFFSET
0,5
COMMENTS
Also the number of partitions of 2n where the number of odd parts in even positions differs from the number of odd parts in odd positions.
LINKS
FORMULA
a(n) = A058696(n) - A000712(n) = A000041(2*n) - A000712(n).
a(n) = A144064(2*n,1) - A144064(n,2).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n) * (1 - 2/(3^(1/4)*n^(1/4)) - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) / sqrt(n) + (Pi/(6*3^(3/4)) + 15*3^(1/4)/(8*Pi)) / n^(3/4)). - Vaclav Kotesovec, May 25 2018
EXAMPLE
a(3) = 1: the Ferrers-Young diagram of 321 cannot be tiled with dominoes because the numbers of white and black squares (when colored like a chessboard) are different but each domino covers exactly one white and one black square:
._____.
|_|X|_|
|X|_|
|_|
.
a(4) = 2: 32111, 521.
a(5) = 6: 3211111, 32221, 4321, 52111, 541, 721.
a(6) = 12: 321111111, 3222111, 33321, 432111, 5211111, 52221, 54111, 543, 6321, 72111, 741, 921.
MAPLE
b:= proc(n, i, p, c) option remember; `if`(n=0, `if`(c=0, 0, 1),
`if`(i<1, 0, b(n, i-1, p, c)+b(n-i, min(n-i, i), -p, c+
`if`(i::odd, p, 0))))
end:
a:= n-> b(2*n$2, 1, 0):
seq(a(n), n=0..50);
# second Maple program:
a:= n-> (p-> p(2*n)-add(p(j)*p(n-j), j=0..n))(combinat[numbpart]):
seq(a(n), n=0..50);
# third Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(
numtheory[sigma](j)*b(n-j, k), j=1..n)*k/n)
end:
a:= n-> b(2*n, 1)-b(n, 2):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_, p_, c_] := b[n, i, p, c] = If[n == 0, If[c == 0, 0, 1], If[i < 1, 0, b[n, i - 1, p, c] + b[n - i, Min[n - i, i], -p, c + If[OddQ[i], p, 0]]]];
a[n_] := b[2n, 2n, 1, 0];
Table[a[n], {n, 0, 50}]
(* second program: *)
a[n_] := PartitionsP[2n] - Sum[PartitionsP[j]* PartitionsP[n - j], {j, 0, n}];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)
CROSSREFS
Column k=0 of A304789.
Sequence in context: A294565 A210068 A210633 * A137829 A262196 A261667
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 17 2018
STATUS
approved