%I #4 May 17 2018 09:52:43
%S 2,45,178,918,4910,24408,124399,641663,3271834,16747810,85795064,
%T 438971334,2247194765,11504929439,58893248470,301494626010,
%U 1543466274885,7901476939284,40450502258451,207080879283742,1060121076327341
%N Number of nX4 0..1 arrays with every element unequal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
%C Column 4 of A304697.
%H R. H. Hardin, <a href="/A304693/b304693.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A304693/a304693.txt">Empirical recurrence of order 69</a>
%F Empirical recurrence of order 69 (see link above)
%e Some solutions for n=5
%e ..0..1..1..0. .0..1..1..0. .0..1..1..1. .0..1..1..0. .0..1..0..1
%e ..0..1..0..1. .0..1..0..1. .1..1..0..0. .0..0..1..0. .1..1..1..1
%e ..0..0..1..1. .0..0..0..1. .0..0..0..1. .1..0..1..0. .1..0..1..1
%e ..1..1..1..0. .1..1..0..1. .0..1..0..0. .1..1..0..1. .0..0..0..1
%e ..1..0..1..1. .0..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..0..1
%Y Cf. A304697.
%K nonn
%O 1,1
%A _R. H. Hardin_, May 17 2018