%I #4 May 17 2018 09:51:37
%S 1,16,56,178,669,2615,9573,35581,133149,495719,1845526,6880247,
%T 25634622,95503501,355868278,1325975629,4940513437,18408548266,
%U 68590644744,255569164599,952255335447,3548119872982,13220347086909,49259228193957
%N Number of nX3 0..1 arrays with every element unequal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
%C Column 3 of A304697.
%H R. H. Hardin, <a href="/A304692/b304692.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) +4*a(n-2) +7*a(n-3) -28*a(n-4) -63*a(n-5) -22*a(n-6) +66*a(n-7) +200*a(n-8) +120*a(n-9) -46*a(n-10) -245*a(n-11) -185*a(n-12) -23*a(n-13) +95*a(n-14) +162*a(n-15) +71*a(n-16) -2*a(n-17) -20*a(n-18) -8*a(n-19) for n>21
%e Some solutions for n=5
%e ..0..1..1. .0..0..0. .0..0..1. .0..1..0. .0..0..1. .0..1..1. .0..0..0
%e ..0..0..1. .1..1..0. .0..1..0. .1..1..1. .1..0..0. .0..0..1. .0..1..1
%e ..0..0..0. .1..0..1. .1..0..0. .1..1..1. .0..0..0. .1..1..0. .0..1..1
%e ..0..1..0. .1..0..1. .0..1..0. .1..0..1. .1..1..0. .0..1..0. .1..0..1
%e ..0..1..1. .0..1..0. .0..1..1. .0..0..0. .1..0..0. .0..0..1. .1..0..0
%Y Cf. A304697.
%K nonn
%O 1,2
%A _R. H. Hardin_, May 17 2018