%I #4 May 10 2018 09:00:54
%S 3,8,6,13,62,88,339,888,2108,6329,16064,43396,117393,310556,838566,
%T 2237425,5994192,16070962,42980591,115197362,308417124,825876409,
%U 2212071620,5923132330,15863081325,42480892952,113761890098,304659172431
%N Number of nX5 0..1 arrays with every element unequal to 1, 2, 5 or 8 king-move adjacent elements, with upper left element zero.
%C Column 5 of A304302.
%H R. H. Hardin, <a href="/A304299/b304299.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-2) +14*a(n-3) +5*a(n-4) -12*a(n-5) -59*a(n-6) -17*a(n-7) +17*a(n-8) +105*a(n-9) -2*a(n-10) -43*a(n-11) -103*a(n-12) +51*a(n-13) +109*a(n-14) +77*a(n-15) -63*a(n-16) -97*a(n-17) -17*a(n-18) +57*a(n-19) +11*a(n-20) -16*a(n-21) -4*a(n-22) +12*a(n-23) -10*a(n-24) -5*a(n-25) +28*a(n-26) +12*a(n-27) -22*a(n-28) -6*a(n-29) +10*a(n-30) -2*a(n-32) for n>34
%e Some solutions for n=5
%e ..0..0..0..0..0. .0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0
%e ..1..0..0..1..0. .0..0..0..0..1. .1..0..0..0..0. .1..0..1..0..1
%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0
%e ..1..0..0..1..0. .0..1..0..1..0. .0..1..0..0..0. .0..0..0..0..0
%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..0. .0..1..0..1..0
%Y Cf. A304302.
%K nonn
%O 1,1
%A _R. H. Hardin_, May 10 2018